Combining Generative Artificial Intelligence and On-Chip Synthesis for De Novo Drug Design

30 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Automation of the molecular design-make-test-analyze cycle speeds up the identification of hit and lead compounds for drug discovery. Using deep learning for computational molecular design and a customized microfluidics platform for on-chip compound synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical space defined by known LXRα agonists, and to suggest structural analogs of known ligands and novel molecular cores. To further the design of lead-like molecules and ensure compatibility with automated on-chip synthesis, this chemical space was confined to the set of virtual products obtainable from 17 different one-step reactions. Overall, 25 de novo generated compounds were successfully synthesized in flow via formation of sulfonamide, amide bond, and ester bond. First-pass in vitro activity screening of the crude reaction products in hybrid Gal4 reporter gene assays revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch re-synthesis, purification, and re-testing of 14 of these compounds confirmed that 12 of them were potent LXRα or LXRβ agonists. These results support the utilization of the proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence and miniaturized bench-top synthesis.

Keywords

Deep Learning Applications
Long short term memory (LSTM)
de novo design
microfluidics device
On Chip synthesis
automation
Flow synthesis

Supplementary materials

Title
Description
Actions
Title
Grisoni Huisman Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.