AutoGraph: Autonomous Graph Based Clustering of Small-Molecule Conformations

29 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


While accurately modeling the conformational ensemble is required for predicting properties of flexible molecules, the optimal method of obtaining the conformational ensemble seems as varied as their applications. Ensemble structures have been modeled by generation, refinement, and clustering of conformations with a sufficient number of samples. We present a conformational clustering algorithm intended to automate the conformational clustering step through the Louvain algorithm, which requires minimal hyperparameters and importantly no predefined number of clusters or threshold values. The conformational graphs produced by this method for O-succinyl-L-homoserine, oxidized nicotinamide adenine dinucleotide, and 200 representative metabolites each preserved the geometric/energetic correlation expected for points on the potential energy surface. Clustering based on these graphs provide partitions informed by the potential energy surface. Automating conformational clustering in a workflow with AutoGraph may mitigate human biases introduced by guess-and-check over hyperparameter selection while allowing flexibility to the result by not imposing predefined criteria other than optimizing the model’s loss function. Associated codes are available at .


Conformational Clustering
Louvain Algorithm

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.