Biological and Medicinal Chemistry

Large Peptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from Klebsiella Oxytoca


Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation across CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations provided an atomistic view on the permeation. It can be concluded that a concentration gradient of 1 M Ptm leads to a translocation rate of about 1 molecule per second and per channel.


Thumbnail image of Main Manuscript-25Dec2020.pdf

Supplementary material

Thumbnail image of SI-25Dec2020.pdf