Machine Learning-Based Model Selection and Parameter Estimation from Kinetic Data of Complex First-Order Reaction Systems

24 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Dealing with a system of first-order reactions is a recurrent problem in chemometrics, especially in the analysis of data obtained by spectroscopic methods. Here we argue that global multiexponential fitting, the still common way to solve this kind of problems has serious weaknesses, in contrast to the available contemporary methods of sparse modeling. Combining the advantages of group-lasso and elastic net – the statistical methods proven to be very powerful in other areas – we obtained an optimization problem tunable to result in from very sparse to very dense distribution over a large pre-defined grid of time constants, fitting both simulated and experimental multiwavelength spectroscopic data with very high performance. Moreover, it was found that the optimal values of the tuning hyperparameters can be selected by a machine-learning algorithm based on a Bayesian optimization procedure, utilizing a widely used and a novel version of cross-validation. The applied algorithm recovered very exactly the true sparse kinetic parameters of an extremely complex simulated model of the bacteriorhodopsin photocycle, as well as the wide peak of hypothetical distributed kinetics in the presence of different levels of noise. It also performed well in the analysis of the ultrafast experimental fluorescence kinetics data detected on the coenzyme FAD in a very wide logarithmic time window.

Keywords

Exponential fitting
Sparse modeling
lasso
elastic net
cross-validation
Bayesian optimization
bacteriorhodopsin photocycle
FAD fluorescence kinetics

Supplementary materials

Title
Description
Actions
Title
FOkin si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.