Abstract
N-acetyl neuraminic acid (Neu5Ac) is a densely functionalized nine-carbon monosaccharide. It ubiquitously decorates the surface of mammalian cells were it is found in terminal positions of glycolipids and glycoproteins. This important saccharide and natural analogs play important roles in a number of processes in health and disease. Despite this few Neu5Ac based therapeutics have been developed. To further study and understand the chemistry and biology of Neu5Ac efficient protocols for synthesis of the parent natural compounds as well as synthetic analogs are required. In the manuscript, we report investigation of alkylation reactions to produce selectively modified Neu5Ac with focus on position 4. The study provides insights in the reaction and we establish robust protocols that allow selective modification of Neu5Ac for use as tool compounds and starting points for drug discovery.