The Passive Permeability Landscape Around Geometrically Diverse Hexa- and Heptapeptide Macrocycles

09 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recent advances in DNA and mRNA encoding technologies have enabled the discovery of high-affinity macrocyclic peptides and peptide-like ligands against virtually any protein target of interest. Unfortunately, even the most potent biochemical leads from these screening technologies often have weak cellular activity due to poor absorption. Biasing such libraries towards passive cell permeability in the design phase would facilitate development of leads against intracellular targets. We set out to empirically evaluate the intrinsic permeability of thousands of geometrically diverse hexa- and heptapeptide scaffolds by permuting backbone stereochemistry and N-methylation, and by including peptoid and β-amino acid residues at select positions, with the goals of providing a resource for biasing library-based screening efforts toward passive membrane permeability and studying the effects of the backbone elements introduced on a large number of compounds. Libraries were synthesized via standard split-pool solid phase peptide synthesis, and passive permeability was measured in pools of 150 compounds using a highly multiplexed version of the parallel artificial mem-brane permeability assay (PAMPA) under sink conditions. Compounds were identified using CycLS, a high-resolution mass spectrometry-based method that uses stable isotopes to encode stereochemistry and matches MSMS data to virtual fragment libraries based on the expected macrocyclic products. From the compounds that were identified with high confidence, 823 hexameric and 1330 heptameric scaffolds had PAMPA permeability coefficients greater than 1x10-6 cm/s. The prevalence of high permeability compounds in these two libraries suggests that passive permeability is achievable for hexa- and heptapeptides with highly diverse backbone geometries.

Keywords

Cyclic Peptides
Passive Cell Permeability
PAMPA
OBOC Libraries
Peptoids

Supplementary materials

Title
Description
Actions
Title
Townsend et al SI
Description
Actions
Title
Curated Heptamer Permeability Data
Description
Actions
Title
Curated Hexamer Permeability Data
Description
Actions
Title
Heptamer Motifs by NH Count
Description
Actions
Title
Hexamer Motifs by NH Count
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.