Predicting Hydrogen Storage in MOFs via Machine Learning

09 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The H2 storage capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials under physisorptive conditions. The identified MOFs are predominantly hypothetical compounds having low densities (<0.31 g cm-3) in combination with high surface areas (> 5,300 m2 g-1), void fractions (~0.90), and pore volumes (>3.3 cm3 g-1). In addition, the relative importance of the input features are characterized, and dependencies on the ML algorithm and training set size are quantified. The single most important features for predicting H2 uptake are pore volume (for gravimetric capacity) and void fraction (for volumetric capacity). The ML models are available for use via the web, allowing for rapid and accurate predictions of usable hydrogen capacities for MOFs with only minimal structural data as input; for the simplest models only a single input feature is required.

Keywords

Energy storage fuel cells
MOFs
Hydrogen storage
Machine learning

Supplementary materials

Title
Description
Actions
Title
SI submit v1
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.