Low Cost, Easy Scalable High Entropy Alloy (HEA) FeCoNiZnGa for High-Efficiency Oxygen Evolution Reaction (OER)

07 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Oxygen evolution reaction (OER) is the key step involved both in water splitting devices as well as in rechargeable metal-air batteries and there is an urgent requirement for a highly stable and low-cost material for efficient OER. In this article, for the first time, electrocatalyst based on high entropy alloy (HEA) of FeCoNiZnGa has been reported for OER. Nano-crystalline high entropy alloys materials withdrew the attention of the research academia due to their emerging unique properties due to the cocktail effect and synergetic effect between the constituent elements. The existing materials (IrO2, RuO2, etc.) being utilized in the OER reaction contain precious metals. Thus, high entropy alloy made up of low-cost elements has been formulated and tested for the OER, which is found to be highly stable and more efficient. The formulation of nanocrystalline HEA (FeCoNiZnGa) utilized a unique recipe casting-cum-comminution (CCC). After electrochemical CV activation, transition metal oxides formation at the HEA surface helps in OER activities. HEA exhibits a low overpotential of 370 mV to achieve a current density of 10 mA cm-2 with a very small Tafel slope of 71 mV dec-1 and exceptional long term stability of electrolysis for over 10 h in 1 M KOH alkaline solution, which is extremely stable in comparison to the state-of-the-art OER electrocatalyst RuO2. Transmission electron microscopic (TEM) studies after 10 h of long term chronoamperometry testing confirmed high stability of HEA as no change in the crystal structure observed. Our work highlights the great potential of HEA towards oxygen evolution reaction which is primary reaction involved in water splitting.


Oxygen Evolution Reaction
High entropy alloys


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.