Bifunctional Pt-IrO2 Catalysts for the Oxygen Evolution and Oxygen Reduction Reactions: Alloy Nanoparticles vs. Nanocomposite Catalysts

07 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In the present study different concepts for the development of bifunctional oxygen reduction reaction / oxygen evolution reaction (ORR / OER) electrocatalysts are explored and compared. Bifunctional ORR / OER catalysts are often suggested to improve the stability during startup and shutdown of fuel cells. Furthermore, they are proposed for so-called unitized regenerative fuel cells (URFCs) that would allow a closed loop system to use and produce hydrogen on demand. We compare the electrocatalytic performance of conventional PtxIry alloy nanoparticles (NPs) with Pt – IrO2 NP composites (nanocomposites), both immobilized onto a commercial carbon support. The Pt – IrO2 nanocomposites thereby consist of a mixture of Pt NPs and IrO2 NPs. By probing the electrocatalytic performance before and after exposing the electrocatalysts to accelerated degradation tests (ADTs) it is shown that the Pt – IrO2 nanocomposite concept offers advantages but also some disadvantages over the conventional alloy concept. In particular it is shown that while the nanocomposites are initially less active for the ORR due to an interparticle effect, their performance is less affected by the ADTs. However, all tested catalysts experience a decline of the Ir / Pt ratio upon the ADTs treatment, highlighting the challenging stability requirements for URFCs.

Keywords

bimetallic electrocatalysts
nanocomposite electrocatalysts
alloy nanoparticles
unitized regenerative fuel cells

Supplementary materials

Title
Description
Actions
Title
Du et al. SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.