Engineering Donor-Acceptor Conjugated Polymers for High-Performance and Fast-Response Organic Electrochemical Transistors

04 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


To date, high-performance organic electrochemical transistors (OECTs) are all based on polythiophene systems. Donor-acceptor (D-A) conjugated polymers are expected to be promising materials for OECTs owing to their high mobility and comparatively low crystallinity (good for ion diffusion). However, the OECT performance of D-A polymers lags far behind that of the polythiophenes. Here we synergistically engineered the backbone, side chain of a series of diketopyrrolopyrrole (DPP)-based D-A polymers and found that redox potential, molecular weight, solution processability, and film microstructures are essential to their performance. Among the polymers, P(bgDPP-MeOT2) exhibited a figure-of-merit (μC*) of 225 F cm–1 V–1 s–1, over one order of magnitude higher than previously reported D-A polymers. Besides, the DPP polymers exhibited high hole mobility over 2 cm2 V−1 s−1, significantly higher than all D-A polymers employed in OECTs, leading to fast response OECTs with a record low turn-off response time of 30 μs. The polymer also exhibited better stability than polythiophene systems with current retention of 98.8% over 700 electrochemical switching cycles. This work provides a systematic solution to unleash the high-performance and fast-response nature of D-A polymers in OECTs.


Conjugated polymers
Organic electrochemical transistors
Diketopyrrolopyrrole Polymers
Operation stabilitiy
Fast response

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.