Materials Science

Monolayer Nanosheets Formed by Liquid Exfoliation of Charge-as-Sisted Hydrogen-Bonded Frameworks

Authors

Abstract

Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials with great potential for use in separation, sensing, catalysis, delivery, and electronics materials applications.

Version notes

Pre-submission

Content

Thumbnail image of HON Paper.pdf

Supplementary material

Thumbnail image of HON ESI.pdf
HON ESI