An All-Photonic Molecular Amplifier and Binary Flip-flop

25 November 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A chemical system is proposed that is capable of amplifying small optical inputs into large changes in internal composition, based on a feedback interaction between switchable fluorescence and visible-light photoswitching. This system would demonstrate bifurcating reaction kinetics under irradiation and reach one of two stable photostationary states depending on the initial composition of the system. This behavior would allow the system to act as a chemical realization of the flip-flop circuit, the fundamental element in sequential logic and binary memory storage. We use detailed numerical modeling to demonstrate the feasibility of the proposed behavior based on known molecular phenomena, and comment on some of the conditions required to realize this system.

Keywords

Molecular logic
Supramolecular chemistry
Molecular devices
molecular computing
systems chemistry
nonlinear behavior

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.