Development and Benchmarking of Open Force Field v1.0.0, the Parsley Small Molecule Force Field

25 November 2020, Version 2


We describe the structure and optimization of the Open Force Field 1.0.0 small molecule force field, code-named Parsley. Parsley uses the SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism in which parameter types are assigned directly by chemical perception, in contrast to traditional atom type-based approaches. This method provides a natural means to incorporate increasingly diverse chemistry without needlessly increasing force field complexity. In this work, we present essentially a full optimization of the valence parameters in the force field. The optimization was carried out with the ForceBalance tool and was informed by reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These data were computed and are maintained with QCArchive, an open-source and freely available distributed computing and database software ecosystem. Tests of the resulting force field against compounds and data types outside the training set show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields.


force field
bond stretch

Supplementary materials

SI Parsley Manuscript-11-24-2020


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.