Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals

02 December 2020, Version 1

Abstract

Magic-sized clusters (MSCs) of semiconductor are typically defined as specific molecular-scale arrangements of atoms that exhibit enhanced stability. They often grow in discrete jumps, creating a series of crystallites, without the appearance of intermediate sizes. However, despite their long history, the mechanism behind their special stability and growth remains poorly understood. This is particularly true considering experiments that have shown discrete evolution of MSCs to sizes well beyond the “cluster” regime and into the size range of colloidal quantum dots. Here, we study the growth of these larger magic-sized CdSe nanocrystals to unravel the underlying growth mechanism. We first introduce a synthetic protocol that yields a series of nine magic-sized nanocrystals of increasing size. By investigating these crystallites, we obtain important clues about the mechanism. We then develop a microscopic model that uses classical nucleation theory to determine kinetic barriers and simulate the growth. We show that magic-sized nanocrystals are consistent with a series of zinc-blende crystallites that grow layer by layer under surface-reaction-limited conditions. They have a tetrahedral shape, which is preserved when a monolayer is added to any of its four identical facets, leading to a series of discrete nanocrystals with special stability. Our analysis also identifies strong similarities with the growth of semiconductor nanoplatelets, which we then exploit to increase further the size range of our magic-sized nanocrystals. Although we focus here on CdSe, these results reveal a fundamental growth mechanism that can provide a different approach to nearly monodisperse nanocrystals.

Keywords

Magic-Sized Clusters
Colloidal Quantum Dots
Modelling
Growth Kinetics
Atomically-Precise Nanocrystals
Cadmium Selenide (CdSe)
Population-Balance Model
Nucleation Theory
Nanoplatelets

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.