Characterization of a Modular Flow Cell System for Electrocatalytic Experiments and Comparison to a Commercial RRDE System

02 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Generator-collector experiments offer insights into the mechanisms of electrochemical reactions by correlating the product and generator currents. Most commonly, these experiments are performed using a rotating ring-disk electrode (RRDE). We developed a double electrode flow cell (DEFC) with exchangeable generator and detector electrodes where the electrode width equals the channel width. Commonalities and differences between the RRDE and DEFC are discussed based on analytical solutions, numerical simulations and measurements of the ferri-/ferrocyanide redox couple on Pt electrodes in a potassium chloride electrolyte. The analytical solutions agree with the measurements using electrode widths of 5 and 2 mm. Yet, we find an unexpected dependence on the exponent of the width so that wider electrodes cannot be analysed using the conventional analytical solution. In contrast, all the investigated electrodes show a collection efficiency of close to 35.4% above a minimum rotation speed or flow rate, where the narrowest electrode is most accurate at the cost of precision and the widest electrode the least accurate but most precise. Our DEFC with exchangeable electrodes is an attractive alternative to commercial RRDEs due to the flexibility to optimize the electrode materials and geometry for the desired reaction.

Keywords

analytic electrochemistry
flow cells
rotating-ring disk electrodes
Multiphysics simulations
in situ experiments

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.