Summit: Benchmarking Machine Learning Methods for Reaction Optimisation

11 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


In the fine chemicals industry, reaction screening and optimisation are essential to development of new products. However, this screening can be extremely time and labor intensive, especially when intuition is used. Machine learning offers a solution through iterative suggestions of new experiments based on past experimental data, but knowing which machine learning strategy to apply in a particular case is still difficult. Here, we develop chemically-motivated virtual benchmarks for reaction optimisation and compare several strategies on these benchmarks. The benchmarks and strategies are encompassed in an open source framework named Summit. The results of our tests show that Bayesian optimisation strategies perform very well across the types of problems faced in chemical reaction optimisation, while many strategies commonly used in reaction optimisation fail

to find optimal solutions.


reaction optimisation
machine learning
process development


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.