Sol–Gel Processing of Water-Soluble Carbon Nitride Enables High-Performance Photoanodes


In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for various applications, the fabrication of high-quality, binder-free PCN films and electrodes has been a largely elusive goal to date. Here we tackle this challenge by devising, for the first time, a sol–gel approach that enables facile preparation of thin films based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol–gel process capitalizes on the use of a water-soluble PHI precursor that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on conductive substrates resulting in formation of mechanically stable polymeric thin layers. The resulting photoanodes exhibit unprecedented PEC performance in alcohol reforming and selective (~100%) conversions with very high photocurrents down to ~0 V vs. RHE, which enables even effective operation under bias-free conditions. The robust binder-free films derived from sol–gel processing of water-soluble PCN thus represent a new paradigm for high-performance ‘soft-matter’ photoelectrocatalytic systems, and pave the way for further applications in which high-quality PCN films are required.

Version notes

Version 03 (as of 05 November 2020)


Supplementary material

Scotch tape test