Local Distortions in a Prototypical Zeolite Framework Containing Double Four-Ring Cages: The Role of Framework Composition and Organic Guests

12 November 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cube-like double four-ring (d4r) cages are among the most frequent building units of zeolites and zeotypes. In materials synthesised in fluoride-containing media, the fluoride anions are preferentially incorporated in these cages. In order to study the impact of framework composition and organic structure-directing agents (OSDAs) on the possible occurrence of local distortions of fluoride-containing d4r cages, density functional theory (DFT) calculations and DFT-based molecular dynamics simulations were performed for AST-type zeotypes, considering four different compositions (SiO2, GeO2, AlPO4, GaPO4) and two different OSDA cations (tetramethylammonium [TMA] and quinuclidinium [QNU]). All systems except SiO2-AST show significant deformations, with a pyritohedron-like distortion of the d4r cages occurring in GeO2- and GaPO4-AST, and a displacement of the fluoride anions towards one of the corners of the cage in AlPO4- and GaPO4-AST. While the distortions occur at random in TMA-containing zeotypes, they exhibit a preferential orientation in systems that incorporate QNU cations.

In addition to providing detailed understanding of the local structure of a complex host-guest system on the picosecond timescale, this work indicates the possibility to stabilise ordered distortions through a judicious choice of the OSDA, which might enable a tuning of the material’s properties.

Keywords

zeotypes
zeolites
fluoride anions
dynamic behaviour
host-guest interactions
AIMD Simulations
density functional theory
OSDA

Supplementary materials

Title
Description
Actions
Title
Fischer 2020 AST-zeotypes d4r SuppInfo v2
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.