H2S Stability of Metal-Organic Frameworks: A Computational Assessment

19 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The H2S stability of a range of MOFs was systematically assessed by first-principle calculations. The most likely degradation mechanism was first determined and we identified the rate constant of the degradation reaction as a reliable descriptor for characterizing the H2S stability of MOFs. A qualitative H2S stability ranking was thus established for the list of investigated materials. Elemental structure-stability relationships were further envisaged considering several variables including the nature of the linkers and their grafted functional groups, the pore size, the nature of metal sites and the presence/nature of coordinatively unsaturated sites. This knowledge enabled the anticipation of the H2S stability of one prototypical MOF, e.g. MIL-91(Ti), which has been previously proposed as a good candidate for CO2 capture. This computational strategy enables an accurate and easy handling assessment of the H2S stability of MOFs and offers a solid alternative to experimental characterizations that require the manipulation of a highly toxic and corrosive molecule.


Metal-organic frameworks
Hydrogen disulfide
Prediction of stability
Understanding of Degradation Mechanism
Density Functional Theory

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.