Abstract
Prodrugs engineered for preferential activation in diseased versus normal tissues offer immense potential to improve the therapeutic index of preclinical and clinical-stage active pharmaceutical ingredients that either cannot be developed otherwise or whose efficacy or tolerability it is highly desirable to improve. Such approaches, however, often suffer from trial-and-error design, precluding predictive design and optimization. Here, using BET bromodomain inhibitors (BETi)—a class of epigenetic regulators with proven anti-cancer activity but clinical development hindered by systemic adverse effects–– we introduce a platform that overcomes these challenges. Through tuning of traceless linkers appended to a “brush prodrug” scaffold, we demonstrate that it is possible to correlate in vitro prodrug activation kinetics with in vivo tumor pharmacokinetics, leading to novel BETi prodrugs with enhanced anti-tumor efficacy and devoid of dose-limiting toxicities. This work has immediate clinical implications, introducing principles for the predictive design of prodrugs and potentially overcoming hurdles in drug development.