Population-level Membrane Diversity Triggers Growth and Division of Protocells

16 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

To date, multiple mechanisms have been described for the growth and division of model protocells, all of which exploit the cumulative, unidirectional movement of lipids. The aggregate that is more complex grows at the expense of the smaller or less complex aggregate. Imbalances between surface area and volume during growth can generate filamentous vesicles which are typically divided by shear forces. Here we describe another pathway for growth and division that depends simply on differences in composition of fatty acid membranes. Growth is driven by the entropically-favored mixing of lipids between two populations. Division is the result of growth-induced curvature. Importantly, growth and division are cyclic and bidirectional, meaning that vesicles made from one type of lipid, e.g. short-chain fatty acids, grow and divide when fed with vesicles consisting of another type of lipid, e.g. long-chain fatty acids, and vice versa. After equilibration, additional rounds of growth and division are possible through the addition of compositionally distinct vesicles. Since prebiotic synthesis likely gave rise to mixtures of lipids, the data are consistent with the presence of growing and dividing protocells on the prebiotic Earth.

Keywords

Prebiotic Chemistry
Origins of Life
Fatty acid vesicles
Protocell growth and division

Supplementary materials

Title
Description
Actions
Title
Movie S2
Description
Actions
Title
Movie S1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.