Total Synthesis of Tiacumicin B: Study of the Challenging β-Selective Glycosylations

09 November 2020, Version 2

Abstract

We report here a full account of the total synthesis of tiacumicin B (Tcn-B), a natural glycosylated macrolide with remarkable antibiotic properties. Our strategy is based on our experience with the synthesis of the tiacumicin B aglycone and on unique 1,2-cis-glycosylation steps. It features the conclusive use of sulfoxide anomeric leaving-groups in combination with a remote 3-O-picoloyl group on the donors allowing highly beta-selective rhamnosylation and noviosylation that rely on H-bond-mediated Aglycone Delivery (HAD). The rhamnosylated C1-C3 fragment was anchored to the C4-C19 aglycone fragment by a Suzuki-Miyaura cross-coupling. Ring-size selective Shiina macrolactonization provided a semi-glycosylated aglycone that was engaged directly in the noviosylation step with a virtually total beta-selectivity. Finally, a novel deprotection method was devised for the removal of a 2-naphthylmethylidene (Nap) ether on a phenol and efficient removal of all the protecting groups provided synthetic tiacumicin B.

Keywords

Antibiotics
Natural Products
Total Synthesis
1,2-Cis-Glycosylation
Glycochemistry
Catalysis
Palladium Chemistry

Supplementary materials

Title
Description
Actions
Title
SI-full-TcnB
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.