High-Throughput Discovery of Hf Promotion on the Formation of Hcp Co and Fischer-Tropsch Activity

09 November 2020, Version 2

Abstract

A proxy-based high-throughput experimental approach was used to explore the stability and activity of Co-based Fischer Tropsch Synthesis catalysts with different promoters on various supports. The protocol is based on the estimation by XRD of active phase, Co, particle size and relative amounts of crystalline phases, Co to support. Sequential libraries samples enabled exploration of four Co loadings with five different promoters on six support materials. Catalysts stable to aging in syngas, displaying minimal change of particle size or relative area, were evaluated for their activity under industrial conditions. This procedure identified SiC as support for stable catalysts and a combination of Ru and Hf to promote the formation hcp Co. Unsupported bulk samples of Co with appropriate amounts of Ru and Hf revealed that the formation of hcp Co is independent of the support. The hcp Co containing catalyst presented the highest catalytic activity and C5+ selectivity amongst the samples tested in this study confirming the effectiveness of the proxy-based high-throughput method.

Keywords

Fischer Tropsch Synthesis
High Throughput Method
hexagonal cobalt

Supplementary materials

Title
Description
Actions
Title
Luis paper SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.