Site-Specific Electronic Properties of [Ag25(SR)18]- Nanoclusters by X-Ray Spectroscopy

16 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present the site-specific electronic properties of Ag25(SR)18 and Au25(SR)18 using X-ray spectroscopy experiments and quantum simulations. To overcome the final state effect observed in X-ray photoelectron spectroscopy (XPS), a unique method was developed to reliably analyze the charge transfer behavior of the NCs. Density functional theory calculations were combined with XPS to provide more insight into the electronic properties of the NCs. The differences in the XPS valence bands of these two NCs were further compared and interpreted using the relativistic effect. The first derivative of the X-ray absorption near-edge structure (XANES) spectrum was further used as a tool to sensitively probe the bonding properties of Ag25(SR)18. By combining the experimental XANES data and their site-specific quantum simulations, the large impact of the staple motif on the bonding properties of the NC was demonstrated. These findings highlight the unique electronic properties of each atomic site in Ag25(SR)18; the effective X-ray analysis techniques developed here can offer new opportunities for the site-specific study of other NCs.

Keywords

thiolate-protected nanoclusters
X-ray photoelectron spectroscopy
X-ray absorption spectroscopy
electronic properties

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.