Insights into the Lithium Substructure of the Superionic Conductors Li3YCl6 and Li3YBr6

12 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The recent interest in the halide-based solid electrolytes Li3MX6 (M = Y, Er, In; X = Cl, Br, I) shows these materials to be promising candidates for solid-state battery application, due to high ionic conductivity and large electrochemical stability window. However, almost nothing is known about the underlying lithium sub-structure within those compounds. Here, we investigate the lithium sub-structure of Li3YCl6 and Li3YBr6 using temperature-dependent neutron diffraction. We compare compounds prepared by classic solid-state syntheses with a mechanochemical synthesis to shed light on the influence of the synthetic approach on the reported yttrium disorder and the resulting surrounding lithium sub-structure. This work provides a better understanding of the strong differences in ionic transport depending on the synthesis procedure of Li3MX6.

Keywords

superionic conductor
lithium rare-earth halide
solid electrolyte
neutron diffraction
lithium sub-structure

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.