Rational Incorporation of Missing Linker Defects Within Metal-Organic Frameworks Generates Highly Active Electrocatalytic Sites

10 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The allure of metal-organic frameworks (MOFs) in heterogeneous electrocatalysis is that catalytically active sites may be designed a priori with an unparalleled degree of control. An emerging strategy to generate coordinatively-unsaturated active sites is through the use of organic linkers that lack a functional group that would usually bind with the metal node. To execute this strategy, we synthesize a model MOF, Ni-MOF-74 and incorporate a fraction of 2-hydroxyterephthalic acid in place of 2,5-dihydroxyterephthalic acid. The defective MOF, Ni74D, is evaluated vs. the nominally defect-free Ni74 MOF with a host of ex situ and in situ spectroscopic and electroanalytical techniques, using the oxidation of hydroxymethylfurtural (HMF) as a model reaction. The data indicates that Ni74D features a set of 4-coordinate Ni-O4 sites that exhibit unique vibrational signatures, redox potentials, binding motifs to HMF, and consequently superior electrocatalytic activity relative to the original Ni74 MOF, being able to convert HMF to the desired 2,5- furandicarboxylic acid at 95% yield and 80% Faradaic efficiency. The strategy put forth to rationally design coordinatively-unsaturated electrocatalytic sites and the methodology put forth in investigating their behavior stand to bolster the understanding and growth of the field.


Metal Organic Frameworks
Biomass Valorization
Renewable Energy


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.