Modification of TiO2 with Metal Chalcogenide Nanoclusters for Hydrogen Evolution

03 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Using density functional theory, corrected for on-site Coulomb interactions (DFT+U), we have investigated surface modification of TiO2 with metal chalcogenide nanoclusters for hydrogen evolution. The nanoclusters have composition M4X4 (M = Sn, Zn; X = S, Se) and are adsorbed at the rutile (110) surface. The nanoclusters adsorb exothermically, with adsorption energies in the range -3.00 eV to -2.70 eV. Computed density of states (DOS) plots show that cluster-derived states extend into the band-gap of the rutile support, which indicates that modification produces a redshift in light absorption. After modification, photoexcited electrons and holes are separated onto surface and cluster sites, respectively. The free energy of H adsorption is used to assess the performance of metal chalcogenide modified TiO2 as a catalyst for HER. Adsorption of H at nanocluster (S, Se) and surface (O) sites is considered, together with the effect of H coverage. Adsorption free energies at cluster sites in the range (-0.15 eV, 0.15 eV) are considered to be favourable for HER. The results of this analysis indicate that the sulphide modifiers are more active towards HER than the selenide modifiers and exhibit hydrogen adsorption free energies in the active range, for most coverages. Conversely, the adsorption free energies at the selenide nanoclusters are only in the active range at low H coverages. Our results indicate that surface modification with small, dispersed nanoclusters of appropriately selected materials can enhance the photocatalytic activity of TiO2 for HER applications.

Keywords

DFT
tio2
hydrogen evolution
surface modification
HER
chalcogenides

Supplementary materials

Title
Description
Actions
Title
SuppInfo
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.