Kinetic Molecular Cationic Control of Defect-Induced Broadband Light Emission in 2D Hybrid Lead Iodide Perovskites

02 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study we examine the effects of changing organic cation concentrations on the efficiency and photophysical implications of exciton trapping in 2-dimensional hybrid lead iodide self-assembled quantum wells (SAQWs). We show increasing the concentration of alkyl and aryl ammonium cations causes the formation of SAQWs at a liquid-liquid interface to possess intense, broadband subgap photoluminescence (PL) spectra. Electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopic studies suggest materials formed under these cation concentrations possess morphologies consistent with inhibited crystallization kinetics, but exhibit qualitatively similar bulk chemical bonding to non-luminescent materials stabilized in the same structure from precursor solutions containing lower cation concentrations. Temperature and power-dependent PL spectra suggest the broadband subgap light emission stems from excitons self-trapped at defect sites, which we assign as edge-like, collective iodide vacancies using a simple model of the chemical equilibrium driving material self-assembly. These results suggest changes to the availability of molecular cations can suitably control the light emission properties of self-assembled hybrid organic-inorganic materials in ways central to their applicability in lighting technologies.

Keywords

Light emissive defects
Defect spectroscopy
Hybrid organic lead halide perovskites

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.