Operando Calorimetry Informs the Origin of Rapid Rate Performance in Microwave-Prepared TiNb2O7 Electrodes

02 November 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The shear-phase compound TiNb2O7 has recently emerged as a safe and high-volumetric density replacement for graphite anodes in lithium ion batteries. An appealing feature of TiNb2O7 is that it retains capacity even at high cycling rates. Here we demonstrate that phase pure and crystalline TiNb2O7 can be rapidly prepared using a high-temperature microwave synthesis method. Studies of the charging and discharging of this material, including through operando calorimetry, permit key thermodynamic parameters to be revealed. The nature of heat generation is dominated by Joule heating, which sensitively changes as the conductivity of the electrode increases with increasing lithiation. The enthalpy of mixing, obtained from operando calorimetry, is found to be small across the different degrees of lithiation pointing to the high rate of lithium ion diffusion at the origin of rapid rate performance.


battery chemistry
material synthesis method
Lithium Ion BatteriesPreparing


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.