Abstract
We present a non-Hermitian formulation of the polaritonic structure of azobenzene strongly coupled to a photonic mode that explicitly accounts for the fleeting nature of the photon-molecule interaction. This formalism reveals that the polaritonic non-adiabatic couplings that facilitate cis-trans isomerization can be dramatically modified by photonic dissipation. We perform Fewest-Switches Surface Hopping dynamics on the surfaces that derive from our non-Hermitian formalism and find that the polaritonic isomerization yields are strongly suppressed for moderate dissipation rates, and that cavity-free isomerization dynamics are recovered under large dissipation rates. These findings highlight the important role that the finite
lifetime of photonic degrees of freedom play in polaritonic chemistry.