Molecular Optimization by Capturing Chemist’s Intuition Using Deep Neural Networks

15 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A main challenge in drug discovery is finding molecules with a desirable balance of multiple properties. Here, we focus on the task of molecular optimization, where the goal is to optimize a given starting molecule towards desirable properties. This task can be framed as a machine translation problem in natural language processing, where in our case, a molecule is translated into a molecule with optimized properties based on the SMILES representation. Typically, chemists would use their intuition to suggest chemical transformations for the starting molecule being optimized. A widely used strategy is the concept of matched molecular pairs where two molecules differ by a single transformation. We seek to capture the chemist's intuition from matched molecular pairs using machine translation models. Specifically, the sequence-to-sequence model with attention mechanism, and the Transformer model are employed to generate molecules with desirable properties. As a proof of concept, three ADMET properties are optimized simultaneously: logD, solubility, and clearance, which are important properties of a drug. Since desirable properties often vary from project to project, the user-specified desirable property changes are incorporated into the input as an additional condition together with the starting molecules being optimized. Thus, the models can be guided to generate molecules satisfying the desirable properties. Additionally, we compare the two machine translation models based on the SMILES representation, with a graph-to-graph translation model HierG2G, which has shown the state-of-the-art performance in molecular optimization. Our results show that the Transformer can generate more molecules with desirable properties by making small modifications to the given starting molecules, which can be intuitive to chemists. A further enrichment of diverse molecules can be achieved by using an ensemble of models.

Keywords

molecular optimization
matched molecular pairs
seq2seq
molecular transformer
recurrent neural network
ADMET

Supplementary materials

Title
Description
Actions
Title
supplementary
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.