Polymer Microarrays Rapidly Identify Competitive Adsorbents of Virus-like Particles (VLPs)

21 October 2020, Version 2

Abstract

The emergence of SARS-CoV-2 highlights the global need for platform technologies to enable rapid development of diagnostics, vaccines, treatments, and personal protective equipment (PPE). However, many current technologies require the detailed mechanistic knowledge of specific material-virion interactions before they can be employed, for example to aid in the purification of vaccine components, or in design of more effective PPE. Here we show that an adaption of polymer micro array method for screening bacterial-surface interactions allows for screening of polymers for desirable material-viron interactions. Non-pathogenic virus like particlesincluding fluorophores are exposed to the arrays in aqueous buffer as a simple model of virons carried to the surface in saliva/sputum. Competitive binding of Lassa and Rubella particles is measured to probe the relative binding properties of a selection of copolymers. This provides the first step in the development of a method for discovery of novel materials with promise for viral binding, with the next being development of this method to assess absolute viral adsorption and assessment of the attenuation of the activity of live virus which we propose would be part of a material scale up step carried out in biological laboratory safety level 4 facilities and the use of more complex media to represent biological fluids.

Keywords

Virus-like particles
Polymer Microarrays
Polymers

Supplementary materials

Title
Description
Actions
Title
ToC suggestion
Description
Actions
Title
161020 AJB - VLP Biointerphases Supp Info
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.