Earth, Space, and Environmental Chemistry

Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater


Urbanization along coastlines alters marine ecosystems including contributing molecules of anthropogenic origin to the coastal dissolved organic matter (DOM) pool. A broad assessment of the nature and extent of anthropogenic impacts on coastal ecosystems is urgently needed to inform regulatory guidelines and ecosystem management. Recently, non-targeted tandem mass spectrometry approaches are gaining momentum for the analysis of global organic matter chemotypes including a wide array of natural and anthropogenic compounds. In line with these efforts, we developed a non-targeted liquid chromatography tandem mass spectrometry workflow that utilizes advanced data analysis approaches such as feature-based molecular networking and repository-scale spectrum searches. This workflow allows the scalable comparison and mapping of seawater chemotypes from large-scale spatial surveys as well as molecular family level annotation of unknown compounds. As a case study, we visualized organic matter chemotype shifts in coastal environments in northern San Diego, USA, after significant rain fall in winter 2017/2018 and highlight potential anthropogenic impacts. The observed seawater chemotype shifted significantly after a major rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, including pesticides (Imazapyr and Isoxaben), cleaning products (Benzyl-tetradecyl-dimethylammonium) and chemical additives (Hexa(methoxymethyl)melamine) and potential degradation products. By expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we further contextualized their possible origin and show their importance in other ecosystems. The mass spectrometry and data analysis pipelines applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which will contribute to a deliberate assessment of how chemical pollution impacts our oceans.

Version notes

Submitted Version 3 (Resubmission)


Thumbnail image of Manuscript_SD-Beaches_revised2.pdf

Supplementary material

Thumbnail image of SI_file2_Feature_Table.txt
SI file2 Feature Table
Thumbnail image of SI_file3_Libary_hits.xlsx
SI file3 Libary hits
Thumbnail image of SI_SD-Beaches_revised2.pdf
SI SD-Beaches revised2