Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands binding the Free Fatty Acid Pocket of SARS-CoV-2 Spike Protein

28 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Following our recent identification of a fatty acid binding site in the SARS-CoV-2 spike protein (Toelzer et al., Science eabd3255 (2020)), we investigate the binding of linoleate and other potential ligands at this site using molecular dynamics simulations. The results support the hypothesis that linoleate stabilises the locked form of the spike, in which its interaction interface for the ACE2 receptor is occluded. The simulations indicate weaker binding of linoleate to the partially open conformation. Simulations of dexamethasone bound at this site indicate that it binds similarly to linoleate, and thus may also stabilize a locked spike conformation. In contrast, simulations suggest that cholesterol bound at this site may destabilize the locked conformation, and in the open conformation, may preferentially bind at an alternative site in the hinge region between the receptor binding domain and the domain below, which could have functional relevance. We also use molecular docking to identify potential ligands that may bind at the fatty acid binding site, using the Bristol University Docking Engine (BUDE). BUDE docking successfully reproduces the linoleate complex and also supports binding of dexamethasone at the spike fatty acid site. Virtual screening of a library of approved drugs identifies vitamins D, K and A, as well as retinoid ligands with experimentally demonstrated activity against SARS-CoV-2 replication in vitro, as also potentially able to bind at this site. Our data suggest that the fatty acid binding site of the SARS-CoV-2 spike protein may bind a diverse array of candidate ligands. Targeting this site with small molecules, including dietary components such as vitamins, which may stabilise its locked conformation and represents a potential avenue for novel therapeutics or prophylaxis for COVID-19.

Keywords

SARS-CoV-2 Spike protein
fatty acid binding site
molecular dynamics simulations
FDA database
BUDE docking
steroids
vitamins
retinoids

Supplementary materials

Title
Description
Actions
Title
Table S1 FA binding site SARS2-spike
Description
Actions
Title
Table S2 FA binding site SARS2-spike
Description
Actions
Title
Table S3 FA binding site SARS2-spike
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.