Sub-Micron Moulding Topological Mass Transport Regimes in Angled Vortex Fluidic Flow


Induced mechanical energy in a thin film of liquid in an inclined rapidly rotating tube in the vortex fluidic device (VFD) can be harnessed for generating non-equilibrium conditions, which are optimal at 45o tilt angle, but the nature of the fluid flow is not understood. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. These topologies have been established through materials processing, as circular flow normal to the surface of the tube, double-helical flow across the thin film, and spicular flow, a transitional region where both effects contribute. This includes new phenomenological shear stressed crystallization and molecular drilling. The manifestation of these patterns has been observed by monitoring mixing times, temperature profiles, and film thickness against rotational speed of liquids in the tube. The grand sum of the different behavioural regimes is a general fluid flow model that accounts for all processing in the VFD at an optimal tilt angle of 45o, and provides a new concept in the fabrication of novel nanomaterials and controlling the organisation of matter.


Supplementary material

SR Supplementary information.Master