Utilization of Biowaste-derived Catalyst for Biodiesel Production: Process Optimization Using Response Surface Methodology and Particle Swarm Optimization Method

28 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this experimental and optimization study, banana (Musa acuminata) flower petals ash has been considered as an effective catalyst in the room temperature (28 °C) assisted transesterification to produce biodiesel from waste cooking oil (WCO). The transformation of Musa acuminata flower petals to ash catalyst has been performed by simple conventional open-air burning process. Three important parameters (catalyst concentration, methanol/oil (M/O) molar ratio and time) that play significant role in conversion of WCO to waste cooking methyl ester (WCME) were investigated. In order to maximize the conversion rate these key transesterification parameters were optimized using central composite rotatable design (CCRD) of response surface methodology (RSM). A metaheuristic algorithm popularly known as Particle swarm algorithm (PSO) has been used to observe a clear picture of the global optimum points scattered around the search domain. PSO has also been used to validate the results obtained from CCRD. The chemical composition and morphology of ash catalyst has been investigated using several analytical techniques such as X-Ray Diffraction (XRD), Fourier Transformation Infrared Spectroscopy (FTIR), X-Ray Fluorescence Spectroscopy (XRF), X-ray Photoelectron Spectroscopy (XPS), Thermal Gravimetric Analysis (TGA), Energy Dispersive Spectroscopy (EDS), Brunauer-Emmett-Teller (BET), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Hammett Indicator method. It was observed that the catalyst remained active till 4th reaction cycle. The catalyst’s reusability, renewability and robust activity in the reaction makes it efficient, economic, green and industrially applicable.

Keywords

Biodiesel
Musa acuminata flower petals
Central Composite Design
Renewable Energy Technologies

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.