Structure-Based Bioactive Phytochemical Design from Ayurvedic Formulations Towards Spike and Mpro Druggable Targets of SARS-CoV-2

22 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The present COVID-19 global crisis invoked different disciplines of the biomedical research community to address the contagious human to human viral transmission and infection severity. Traditional or de novo drug discovery approach is a very time consuming process and will conflict with the urgency to discover new anti-viral drugs for combating the present global pandemic. Modern anti-viral drugs are not very effective and show resistance with serious adverse effects. Thus, identifying bioactive natural ingredients (phytochemical) from different medicinal plants or Ayurvedic formulations provides an effective alternative therapy for SARS-CoV-2 viral infections. We performed structure-based phytochemical design studies involving bioactive phytochemicals from medicinal plants towards two key druggable targets, spike glycoprotein and main protease (Mpro) of SARS-CoV-2. Phyllaemblicin class of phytocompounds showed better binding affinity towards both these SARS-CoV-2 targets and its binding mode revealed interactions with critical amino acid residues at its active sites. Also, we have successfully shown that the SARS-CoV-2 spike glycoprotein interaction towards human ACE2 receptor as its port of human cellular entry was blocked due to conformational variations in ACE2 receptor recognition by the binding of the phytocompound, Phyllaemblicin C at the ACE2 binding domain of spike protein. Our study shows that the Phyllaemblicin class of phytochemicals can be a potential dual inhibitor of spike and Mpro proteins of SARS-CoV-2 and could be promising for the treatment of COVID-19.

Keywords

COVID-19 data
Molecular docking analysis
Structure based drug repurposing
Protein-protein interaction data
IC50 value
Ayurvedic Treatments

Supplementary materials

Title
Description
Actions
Title
Supplementary-covid
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.