Evaluation of the Mechanical Properties and Blood Compatibility of Polycarbonate Urethane and Fluorescent Self-Colored Polycarbonate Urethane as Polymeric Biomaterials

22 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Fluorescent polymeric biomaterials have got significant attention due to their promising applications in biomedical fields such as labeling, monitoring, diagnostics, imaging and tracking. Polycarbonate urethane (PCU) and 1,8-naphthalimide based fluorescent dyes separately have been studied and shown great biocompatibility and physical properties. Therefore, in this work we have taken advantage of excellent fluorescence properties of naphthalimide dye and biocompatibility of PCU, and covalently attached the fluorescent dye to the PCU (self-colored PCU). Covalent attachment can increase the stability of the dye in the biomedical applications especially when biomaterials are in contact with blood and can inhibit the release of the dye to surrounding media. DMTA, AFM, and contact angle measurement were used to study the mechanical and morphological properties of the self-colored PCU and results showed that incorporation of the dye to the PCU did not change the mechanical and morphological properties of the PCU. In addition, MTT assay, hemolysis assay, PT and aPTT assays as well as protein adsorption assay was used to evaluate the blood compatibility of PCU and self-colored PCU and results indicated great bio and blood compatibility of these materials. These great mechanical and blood compatibility properties of the self-colored PCU as well as their excellent fluorescent properties suggested that, these materials could be an ideal candidates to be use in biomedical applications in which non-invasive and non-destructive fluorescent based techniques are required.


Self-colored Polycarbonate Urethane
Blood Compatibility
Polycarbonate Urethane


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.