Interfacial Reactivity and Speciation Emerging from Namontmorillonite Interactions with Water and Formic Acid at 200°C: Insights from Reactive Molecular Dynamics Simulations, Infrared Spectroscopy, and X-ray Scattering Measurements

22 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Reactive organic fluid - mineral interactions at elevated temperatures contribute to the evolution of planetary matter. One of the less studied but important transformations in this regard involves the reactions of formic acid with naturally occurring clays such as sodium montmorillonite. To advance a mechanistic understanding of these interactions, we use ReaxFF reactive molecular dynamics simulations in conjunction with infrared (IR) spectroscopy and X-ray scattering experiments to investigate the speciation behavior of water-formic acid mixtures on sodium montmorillonite interfaces at 473 K and 1 atm. Using a newly developed reactive forcefield, we show that the experimental IR spectra of unreacted and reacted mixture can be accurately reproduced by ReaxFF/MD. We further benchmark the simulation predictions of sodium carbonate and bicarbonate formation in the clay interlayers using Small and Wide-Angle X-ray Scattering measurements. Subsequently, leveraging the benchmarked forcefield, we interrogate the pathway of speciation reactions with emphasis on carbonate, formate, and hydroxide groups elucidating the energetics, transition states, intermediates, and preferred products. We also delineate the differences in reactivities and catalytic effects of clay edges, facets, and interlayers owing to their local chemical environments, which have far reaching consequences in their speciation behavior. The experimental and simulation approaches described in this study and the transferable forcefields can be applied translationally to advance the science of clay-fluid interactions for several applications including subsurface fluid storage and recovery and clay-pollutant dynamics


Molecular Dynamics
IR spectroscopy
X-ray scattering


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.