Shuttle Arylation by Rh(I) Catalyzed Reversible Carbon–Carbon Bond Activation of Unstrained Alcohols

22 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The advent of transfer hydrogenation and borrowing hydrogen reactions paved the way to manipulate simple alcohols in previously unthinkable manners and circumvent the need for hydrogen gas. Analogously, transfer hydrocarbylation could greatly increase the versatility of tertiary alcohols. However, this reaction remains unexplored because of the challenges associated with the catalytic cleavage of unactivated C–C bonds. Herein, we report a rhodium(I)-catalyzed shuttle arylation cleaving the C(sp2)–C(sp3) bond in unstrained triaryl alcohols via a redox-neutral β-carbon elimination mechanism. A selective transfer hydrocarbylation of substituted (hetero)aryl groups from tertiary alcohols to ketones was realized, employing benign alcohols as latent C-nucleophiles. All preliminary mechanistic experiments support a reversible β-carbon elimination/migratory insertion mechanism. In a broader context, this novel reactivity offers a new platform for the manipulation of tertiary alcohols in catalysis.


C-C activation
shuttle catalysis

Supplementary materials

Lutzetal SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.