Biobased Aldehydes from Fatty Epoxides Through Thermal Cleavage of β-Hydroxy Hydroperoxides

15 October 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The ring-opening of epoxidized methyl oleate by aqueous H2O2 has been studied using tungsten and molybdenum catalysts to form the corresponding fatty b-hydroxy hydroperoxides. It was found that tungstic acid and phosphostungstic acid gave the highest selectivities (92-93%) towards the formation of the desired products, thus limiting the formation of the corresponding fatty 1,2-diols. The optimized conditions were applied to a range of fatty epoxides to give the corresponding fatty b-hydroxy hydroperoxides with 30-80% isolated yields (8 examples). These species were fully characterized by 1H and 13C NMR, HPLC-HRMS and their stability was studied by DSC. The thermal cleavage of the b-hydroxy hydroperoxide derived from methyl oleate was studied both in batch and flow conditions. It was found that the thermal cleavage in flow conditions gave the highest selectivity towards the formation of aldehydes with limited amounts of byproducts. The aldehydes were both formed with 68% GC yield and nonanal and methyl 9-oxononanoate were isolated with 57 and 55% yield, respectively. Advantageously, the overall process does not require large excess of H2O2 and only generates water as a byproduct.


Beta-hydroxy hydroperoxides
Thermal Cleavage
Flow chemistry

Supplementary materials

ESI-ChemRxiv HHP Thomas

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.