A Molecular Perspective on Water Vapour Accommodation into Ice and Its Dependence on Temperature

21 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Accommodation of vapour phase water molecules into ice crystal surfaces is a fundamental process controlling atmospheric ice crystal growth. Experimental studies investigating the accommodation process with various different techniques report widely spread values of the water accommodation coefficient on ice, αice, and the results on its potential temperature- dependence are inconclusive. We run molecular dynamics simulations of molecules condensing onto the basal plane of ice Ih using the TIP4P/Ice empirical force field and characterize the accommodated state from this molecular perspective, utilizing the interaction energy, the tetrahedrality order parameter and the distance below the instantaneous interface as criteria. Changes of the order parameter turn out to be a suitable measure to distinguish between surface and bulk states of a molecule condensing onto the disordered interface. In light of the findings from the molecular dynamics, we discuss and re- analyse a recent experimental data set on αice obtained with an environmental molecular beam (EMB) setup [Kong et al, Journal of Physical Chemistry A, 2014] using kinetic molecular flux modelling, aiming at a more comprehensive picture of the accommodation process from a molecular perspective. These results indicate that the experimental observations indeed cannot be explained by evaporation alone. At the same time our results raise the issue of rapidly growing relaxation times upon decreasing temperature, challenging future experimental efforts to cover relevant time scales. Finally, we discuss the relevance of the water accommodation coefficient on ice in the context of atmospheric cloud particle growth processes.


accommodation coefficient
atmospheric ice crystal growth
vapour deposition

Supplementary materials

Acc SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.