Assessing Potential Inhibitors for SARS-CoV-2 Main Protease from Available Drugs using Free Energy Perturbation Simulations

07 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A virtual screening approach using docking and free energy pertubation was successfully validated with previously characterized inhibitors of SARS-CoV-2 main protease (Mpro). This approach and then used to estimate the binding affinity to Mpro of more than 6300 compounds in the ZINC15 database. Delamanid, an anti-tuberculosis agent, has a predicted nanomolar binding affinity for SARS-CoV-2 Mpro and is thus a promissing drug candiate for COVID-19. In addition, several compounds including three antibiotics exhibits femtomolar affinity for SARS-CoV-2 Mpro. The residues around positions 24, 45, 143, 165, and 190 were found to be involved in the binding of the strongest inhibitors.

Keywords

COVID-19
SARS-CoV-2
Main protease
Free energy pertubation
Delamanid

Supplementary materials

Title
Description
Actions
Title
nCoV Mpro inhibitors 2nd SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.