An Electroreductive Approach to Silyl Radical Chemistry via Strong Si–Cl Bond Activation

15 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The construction of C(sp3)–Si bonds is important in synthetic, medicinal, and materials chemistry. In this context, reactions mediated by silyl radicals have become increasingly attractive but methods for accessing these intermediates remain limited. We present a new strategy for silyl radical generation via electroreduction of readily available chlorosilanes. At highly biased potentials, electrochemistry grants access to silyl radicals through energetically uphill reductive cleavage of strong Si–Cl bonds. This strategy proved to be general in various alkene silylation reactions including disilylation, hydrosilylation, and allylic silylation under simple and transition-metal-free conditions.

Keywords

Electrosynthesis
Silyl Radical Chemistry
Electroreduction
Alkene Functionalization
Allylic substitution
chlorosilanes

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.