Atom-Economical Cross-Coupling of Internal and Terminal Alkynes to Access 1,3-Enynes

16 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Selective carbon–carbon (C–C) bond formation in chemical synthesis generally requires pre-functionalized building blocks. However, the requisite pre-functionalization steps undermine the efficiency of multi-step synthetic sequences, which is particularly problematic in large-scale applications, such as in the commercial production of pharmaceuticals. Herein, we describe a selective and catalytic method for synthesizing 1,3-enynes without pre-functionalized building blocks. This method is facilitated by a tailored P,N-ligand that enables regioselective coupling and suppresses secondary E/Z-isomerization of the product. The transformation enables several classes of unactivated internal acceptor alkynes to be coupled with terminal donor alkynes to deliver 1,3-enynes in a highly regio- and stereoselective manner. The scope of compatible acceptor alkynes includes propargyl alcohols, (homo)propargyl amine derivatives, and (homo)propargyl carboxamides. The reaction is scalable and can operate effectively with 0.5 mol% catalyst loading. The products are versatile intermediates that can participate in various downstream transformations. We also present preliminary mechanistic experiments that are consistent with a redox-neutral Pd(II) catalytic cycle.

Keywords

1,3-Enynes
Cross-Coupling
Palladium
Alkynes
P,N-Ligands

Supplementary materials

Title
Description
Actions
Title
Supporting Info
Description
Actions
Title
anti-18
Description
Actions
Title
syn-19
Description
Actions
Title
66
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.