Abstract
We describe the implementation of a Monte Carlo basin hopping global optimization procedure for the prediction of molecular crystal structure. The basin hopping method is combined with quasi-random structure generation in a hybrid method for crystal structure prediction, QR-BH, which combines the low-discrepancy sampling provided by quasi-random sequences with basin hopping's efficiency at locating low energy structures. Through tests on a set of single-component molecular crystals and co-crystals, we demonstrate that QR-BH provides faster location of low energy structures than pure quasi-random sampling, while maintaining the efficient location of higher energy structures that are important for identifying important polymorphs.
Supplementary materials
Title
SI Exploration and Optimization in crystal structure prediction
Description
Actions