Punching Above its Weight: Life Cycle Energy Accounting and Environmental Assessment of Vanadium Microalloying in Reinforcement Bar Steel

15 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The manuscript presents a detailed analysis of embodied energy and carbon footprint reduction enabled by microalloying of steel, thereby providing a rich global perspective of the (outsized) role of chemical elements added in trace concentrations on the overall footprint of the construction industry. As such, the manuscript addresses an important and timely topic at the intersection of materials criticality, structural performance, life cycle assessment, and policy interventions.

The United Nations estimates that the worldwide energy consumption of buildings accounts for 30—40% of global energy production, underlining the importance of the judicious selection of construction materials. Much effort has focused on the use of high-strength low-alloy steels in reinforcement bars whose economy of materials use is predicated upon improved yield strengths in comparison to low-carbon steels. While microalloying is known to allow for reduced steel consumption, a sustainability analysis in terms of embodied energy and CO 2 has not thus far been performed. Here we calculate the impact of supplanting lower grade reinforcement bars with higher strength vanadium microalloyed steels on embodied energy and carbon footprint. We find that the increased strength of vanadium microalloyed steel translates into substantial material savings over mild steel thus reducing the total global fossil carbon footprint by as much as 0.385%. A more granular analysis pegs savings for China and the European Union at 1.01 and 0.19%, respectively, of their respective emissions.


life cycle assessment studies
Structural Materials
Machine LearningThe chemical composition
Vanadium Carbides
HSLA steel High strength


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.