Coupled Nuclear-Electronic Decay Dynamics of O2 Inner Valence Excited States Revealed by Attosecond XUV Wave-Mixing Spectroscopy

13 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Multiple Rydberg series converging to the O2+ 𝑐 4Σ𝑢 state, accessed by 20-25 eV extreme ultraviolet (XUV) light, serve as important model systems for the competition between nuclear dissociation and electronic autoionization. The dynamics of the lowest member of these series, the 3sσg state around 21 eV, has been challenging to study owing to its ultra-short lifetime (< 10 fs). Here, we apply transient wave-mixing spectroscopy with an attosecond XUV pulse to investigate the decay dynamics of this electronic state. Lifetimes of 5.8±0.5 fs and 4.5±0.7 fs at 95% confidence intervals are obtained for v=0 and v=1 vibrational levels of the 3s Rydberg state, respectively. A theoretical treatment of predissociation and electronic autoionization finds that these lifetimes are dominated by electronic autoionization. The strong dependence of the electronic autoionization rate on the internuclear distance because of two ionic decay channels that cross the 3s Rydberg state results in the different lifetimes of the two vibrational levels. The calculated lifetimes are highly sensitive to the location of the 3s potential with respect to the decay channels; by slight adjustment of the location, values of 6.2 and 5.0 fs are obtained computationally for the v=0 and v=1 levels, respectively, in good agreement with experiment. Overall, an intriguing picture of the coupled nuclear-electronic dynamics is revealed by attosecond XUV wave-mixing spectroscopy, indicating that the decay dynamics are not a simple competition between isolated autoionization and predissociation processes.


Attosecond spectroscopy
nonlinear spectroscopy


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.