More and Faster: Simultaneously Improving Reaction Coverage and Computational Cost in Automated Reaction Prediction Tasks

12 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Automated reaction prediction has the potential to elucidate complex reaction networks for applications ranging from combustion to materials degradation. Although substantial progress has been made in predicting specific reaction pathways and resolving mechanisms, the computational cost and inconsistent reaction coverage of automated prediction are still obstacles to exploring deep reaction networks without using heuristics. Here we show that cost can be reduced and reaction coverage can be increased simultaneously by relatively straight- forward modifications of the reaction enumeration, geometry initialization, and transition state convergence algorithms that are common to many emerging prediction methodologies. These changes are implemented in the context of Yet Another Reaction Program (YARP), our reaction prediction package, for which we report a head-to-head comparison with prevailing methods for two benchmark reaction prediction tasks. In all cases, we observe near perfect recapitulation of established reaction pathways and products by YARP, without the use of heuristics or other domain knowledge to guide reaction selection. In addition, YARP also discovers many new kinetically relevant pathways and products reported here for the first time. This is achieved while simultaneously reducing the cost of reaction characterization nearly 100-fold and increasing transition state success rates and intended rates over 2-fold and 10-fold, respectively, compared with recent benchmarks. This combination of ultra-low cost and high reaction-coverage creates opportunities to explore the reactivity of larger sys- tems and more complex reaction networks for applications like chemical degradation, where approaches based on domain heuristics fail.

Keywords

Reaction Prediction
Reaction Networks

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.