Mass Transport in Catalytic Pores of GDE-Based CO2 Electroreduction Systems

12 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Gas diffusion electrode (GDE)-based setups have shown promising performance for CO2 electrocatalysis and further development of these systems will be important on the path to industrial feasibility. In this article, we model an effective catalyst pore within a GDE-based flow-cell to study the influence of the catalyst structure and operating conditions on the reaction environment for CO2 electrocatalysis at practically relevant current densities. Using a generalized modified Poisson-Nernst-Planck (GMPNP) 3D model of the nanoporous catalyst layer, we show that the length of the catalyst pore as well as the boundary conditions at the gas-electrolyte and electrolyte-electrolyte interfaces across this length are highly influential parameters for determining the conditions within the catalyst pore. Pores with the same catalytic surface area can have very different reaction environments depending primarily on the pore length and not the pore radius. Properties such as electrolyte pH and buffer breakdown, ionic strength and CO2 concentration are also highly-sensitive to the catalyst layer thickness, gas pressure, electrolyte flow rate and the flow-channel geometry. The applied potential impacts the concentration of ionic species in the pore, which in turn determines the solubility of CO2 available for the reaction. Our results underline the need to understand and manage transport within GDE-based electrocatalysis systems as an essential means to control catalyst performance. Benchmarking of GDE-based electrocatalytic systems against their structural and operational parameters will be important for achieving improvements in performance that can be ultimately translated to large-scale operation.


CO2 reduction
mass transport
Poisson Nernst Planck
gas diffusion electrodes

Supplementary materials

GDE pore SI DBohra


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.